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Abstract—in this article, nonlinear analysis of the 

composite plates were carried out using the semiloof 

shell element. The finite element formulation is based 

on Green strains and Piola-Kirchhoff stresses. The 

nonlinear solution procedure was implemented to 

study the nonlinear behaviour of composite plates. 

Due to coupling effect in composite plate and shells 

under in-plane load, pre-buckling displacement is 

significant and hence the behaviour is nonlinear. A 

verification study has been carried out to establish the 

efficiency of the present model. Since the margin of 

factor of safety is less in aerospace application, the 

detailed understanding and study of pre-buckling 

displacement is necessary for the designer 

Keywords—Semiloof; Nonlinear; Finite element; 

composite; plate. 

I. INTRODUCTION 

Composite materials possess very high specific 

properties and excellent fatigue and impact 

strengths. In unsymmetrical laminated composite 

plates as soon as the in-plane load is applied, it 

undergoes lateral displacement even though the 

load applied is much lower than the buckling load 

which was pointed out by Leissa [1]. This is termed 

as pre-buckling deformation.  

 

 

 

 

 

 

 

 

 
Fig.1 Pre-Buckling displacement in unsymmetrical laminated 

plates due to in-plane loads 

 

The magnitude of the pre-buckling deformation 

depends on bending-stretching and types of 

coupling in the laminate. The extent of coupling 

depends on the number of layers in the laminate. 

The buckling analysis of a laminate with the 

prebuckling deformation included becomes 

analogous to that of plate with geometric 

imperfection, which is a nonlinear problem. If the 

prebuckling deformation are ignored it becomes a 

linear buckling problem. To investigate this, the 

Composite plates subjected to in-plane loads are 

studied here treating them as:(i) linear buckling (ii) 

extended linear buckling and nonlinear buckling. 

Cetkovic et al. [2] performed a nonlinear 

analysis of laminated plates using layer wise 

displacement model, in which the nonlinear 

incremental algebraic equilibrium equations are 

solved using direct iteration method. Wang et al. 

[3] analysed the displacement and stress analysis of 

laminated composite plates using eight node quasi-

conforming solid shell element, which is not only 

locking free but is highly computational efficiency 

as it possesses the explicit element stiffness matrix, 

where all the six components of stresses can be 

evaluated by the element in terms of 3-D 

constitutive equations and appropriately assumed 

element strain Faria [4] investigated the buckling 

optimization and pre-buckling effect of a composite 

plate using piezoelectric actuators, where the 

actuators are used to achieve two goals: to optimize 

buckling load under uncertain loading via stress 

stiffening effects and to ameliorate the plate 

prebuckling response through application of 

piezoelectric bending moments. Han et al. [5] deals 

with post-buckling behaviour of laminated 

composite plates under the combination of in-plane 

shear, compression and lateral loading using 

element-based Lagrangian formulation where the 

natural coordinate based strains, stresses and 

constitutive equations are used in the element and it 

uses only single mapping but it also converges 

faster. Vanet al. [6] improved the finite element 

computational model using a flat four-node element 

with smoothed strains for geometrically non linear 

analysis of composite plates. The vonkarman’s 

large deflection theory and total Lagrangian 

approach is employed to describe the small strain 

geometric nonlinearity with large deformation 

using (FSDT).Cheon[7] used Lagrangian 

formulation for nonlinear analysis of shell 

structures where the stress-strain and constitutive 

equations are based on the natural coordinate has 

been used throughout the formulation which offers 

advantages of easy implementation compared to the 

traditional Lagrangian formulation. 
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II. FINITE ELEMENT FORMULATION 

The Finite Element Formulation is based on 

principle of virtual work. 

Internal Work done by stresses =External forces 

due to virtual Displacement. 

∫ 𝛿�̅�𝑇𝜎𝑑 𝑣 = ∫𝛿𝑢𝑇.p. da                      (1)                                                                             

𝜎 = Stress Vector  ,e̅ =  Strain vector . 

u =Displacement component vector, 

p=Externally Applied load, 

da=Elemental area ,dv=Elemental volume 

Linear stress strain relation is expressed as  

σ = [𝑄](�̅� − 𝑒𝑇)                                  (2) 

[𝑄] = Transformed Reduced stiffness Matrix , 

𝑒𝑇= Initial strain due to temperature Rise 

eT = αT(3) 

𝛼-Coefficient of thermal Expansion, 

  T-Rise in Temperature 

The strain at any point in FGM plates is written as 

[5] 

�̅�𝑥𝑥 = 𝑒𝑥𝑥 + 𝑧𝐾𝑥𝑥    (4) 

�̅�𝑦𝑦 = 𝑒𝑦𝑦 + 𝑧𝐾𝑦𝑦   (5) 

�̅�𝑥𝑦 = 𝑒𝑥𝑦 + 𝑧𝐾𝑥𝑦            

(6)        

Where 

𝑒𝑥𝑥 = 𝑈𝑥 +
1

2
[𝑈𝑥

2 + 𝑉𝑥
2 + 𝑊𝑥

2] 

𝑒𝑦𝑦 = 𝑈𝑦 +
1

2
[𝑈𝑦

2 + 𝑉𝑦
2 + 𝑊𝑦

2] 

𝑒𝑥𝑦 = 𝑈𝑦 + 𝑉𝑥 + [𝑈𝑥𝑈𝑦 + 𝑉𝑥𝑉𝑦 + 𝑊𝑥𝑊𝑦] 

𝐾𝑥𝑥 = 𝑊𝑥𝑥 +
1

2
[𝑊𝑥𝑥

2 + 𝑊𝑥𝑦
2] 

𝐾𝑦𝑦 = 𝑊𝑥𝑥 +
1

2
[𝑊𝑦𝑦

2 + 𝑊𝑥𝑦
2] 

𝐾𝑋𝑦 = 2𝑊𝑥𝑦 +
1

2
[𝑊𝑥𝑦(𝑊𝑥𝑥 + 𝑊𝑦𝑦)] 

Where  𝑈𝑥  denotes derivative of U w.r.to x, 

We can Write 

[𝑒] = [

𝑒𝑥𝑥

𝑒𝑦𝑦

𝑒𝑥𝑦

]and[𝑘] = [

𝑘𝑥𝑥

𝑘𝑦𝑦

𝑘𝑥𝑦

] 

The   left-hand side of Eq.(1) may be written as 

∫ 𝛿𝑒−𝑇𝜎𝑑 𝑣 = ∫([𝑒] + 𝑧[𝑘])𝑇 [�̅�](�̅� − 𝑒𝑇)𝑑𝑣
     (6) 

 = ∫([𝑒] + 𝑧[𝑘])𝑇 [�̅�]([𝑒] + 𝑧[𝑘] − 𝑒𝑇)𝑑𝑣 

[∵= �̅�([𝑒] + 𝑧[𝑘])] 
 =∫([𝑒] + 𝑧[𝑘])𝑇 [�̅�]([𝑒] + 𝑧[𝑘]𝑑𝑣 

−([𝑒] + 𝑧[𝑘])𝑇[�̅�]𝛼𝑇𝑑𝑣   
  (7) 

For the composite volume integral is split in to two 

parts,  

integrating [3,4] 

∫ 𝛿 [
𝑒
𝑘
]
𝑇

[𝐴 𝐵
𝐵 𝐷

] [
𝑒
𝑘
] 𝑑𝑎 − ∫ 𝛿 [

𝑒
𝑘
]
𝑇

|
𝐹𝑁

𝑀𝑇
| 𝑑𝑎 

    (8)   

The [A][B] and [D] matrices are called as the 

extensional stiffness, coupling stiffness, bending 

stiffness respectively. 

([𝐴], [𝐵], [𝐷]) = ∫ (1, 𝑧, 𝑧2)[𝑄]
ℎ

2
−ℎ

2

𝑑𝑧 (9)                         

And the thermal force FN and  

the thermal moment MT are given by 

{𝐹𝑁 , 𝑀𝑇} = ∫ [𝑄]{𝛼(𝑧)}
ℎ

2
−ℎ

2

∆𝑇(1, 𝑧)𝑑𝑧  (10) 

We can write  

[
𝑒
𝑘
] = [𝑒𝐿] + [𝑒𝑁𝐿]   

  (11) 

𝑒= plain strain, 𝑘 =curvature, 
[𝑒𝐿] = Linear part , 
[𝑒𝑁𝐿]=Non Linear part 

The linear vector is  

[𝑒𝐿] = [𝑢𝑥, 𝑣𝑥 , (𝑢𝑦 + 𝑣𝑦), 𝑤𝑥𝑥,𝑤𝑦𝑦,2𝑤𝑥𝑦] 

The nonlinear part can be written as        

[𝑒𝑁𝐿] =
1

2
[𝑅𝑜][𝜙]                                               (12) 

Where  is the vector of slope and defined as               

[𝜙]𝑇 = [𝑢𝑥, 𝑢𝑦 , 𝑣𝑥,𝑣𝑦 . 𝑤𝑥 . 𝑤𝑦,𝑤𝑥𝑥,𝑤𝑦𝑦 , 𝑤𝑥𝑦 ] 

Where [ 𝑅𝑜] =

[
 
 
 
 
 
 
𝑢𝑥 0 𝑣𝑥 0 𝑤𝑥 0 0 0 0
0 𝑢𝑦 0 𝑣𝑦 0 𝑤𝑦 0 0 0

𝑢𝑦 𝑢𝑥 𝑣𝑦 𝑣𝑥 𝑤𝑦 𝑤𝑥 0 0 0

0 0 0 0 0 0 𝑤𝑥𝑥 0 𝑤𝑥𝑦

0 0 0 0 0 0 0 𝑤𝑦𝑦 𝑤𝑥𝑦

0 0 0 0 0 0 𝑤𝑥𝑦 𝑤𝑥𝑦 0 ]
 
 
 
 
 
 

 

(13) 

By taking the variation in Eq. (11) 

𝛿 [
휀
𝑘
] = 𝛿[휀𝐿] +

1

2
[𝑅𝑜]𝛿[𝜙] +

1

2
𝛿[𝑅𝑜][𝜙] 

         =  𝛿[휀𝐿] + [𝑅𝑜]𝛿[𝜙]                                 (14) 

Where 

[𝑅𝑜]𝛿[𝜙] = 𝛿[𝑅𝑜][𝜙] 
The vector displacement from shape  

function matrix of Semiloof shell element is [3,4] 

[u] = [d] [q]    (15) 

Where   [q]   - Nodal degree of freedom.  

            [d]   - Shape function                                                                                         

The vector of slope[𝜙]can be written as  

[𝜙] = [𝐺][𝑞]                                                             

(16) 

𝛿[𝜙] = [𝐺]𝛿[𝑞]                                                       

(17) 

The strain energy displacement relation for linear  

part is given as 

[𝑒𝐿] = [𝐵𝐿][𝑞]                                                        

(18) 

[𝑒𝐿] = [𝐵𝐿]𝛿[𝑞] 
Using  Eq. (13) and Eq.(17) 
[𝑒𝑁𝐿] = [𝑅𝑜][𝐺]𝛿[𝑞]                                              

(19)                

Therefore the nonlinear strain matrix[𝐵𝑁𝐿] 
can be written as 
[𝐵𝑁𝐿] = [𝑅𝑜][𝐺] .                                                   

(20) 
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Substituting  Eq.(17), 

 Eq.(18) and Eq.(19)   in Eq. (14) 

𝛿 [
휀
𝑘
] = [[𝐵𝑁] + [𝐵𝑁𝐿]]𝛿[𝑞] 

= [𝐻]𝛿[𝑞]    (21) 

𝐻 = [𝐵𝑁] + [𝐵𝑁𝐿]                                              (22) 

The finite element representation of 

 FGM plates using the Equations 

∫𝛿�̅�𝑇𝜎𝑑𝑣 = ∫𝛿𝑢𝑇 𝑃𝑑𝑎 

𝜎 = [𝑄](�̅� − 𝑒𝑇)with some simplifications 

can be written as arbitrary variations 

in [q] for single element. ∫ 𝛿[𝑞]𝑇 [𝐻]𝑇[𝐹0]𝑑𝑎 =

∫[𝑞]𝑇 ⌊∫[𝑞]𝑇[𝑃]⌋𝑑𝑎 + 

∫[𝐻]𝑇 [𝐹𝑇]𝑑𝑎 (23) 

Where[𝐹0] = [
𝐴 𝐵
𝐵 𝐷

] [
𝑒𝐿

𝑒𝑁𝐿
]   , 

[𝐹𝑇] = [
𝐹𝑁

𝑀𝑇
]and[𝐹] = [𝐹𝑜] − [𝐹𝑇](24) 

Since 𝛿[𝑞]  is an arbitrary variation of nodal 

displacement,  

the non linear equation for composite plates and  

shells reduced to  

𝜓 = ∫[𝐻]𝑇 [𝐹0]𝑑𝑎 − [𝐹𝑜] − [𝐹𝑇] = 0       (25) 

whereψis the vector residual force. 

[𝑓𝑚] = ∫[𝑑]𝑇[𝑝] 𝑑𝑎                                   (26)            

[𝐹𝑇]=∫[𝐻]𝑇 [
𝐹𝑁

𝑀𝑇
] 𝑑𝑎                                (27) 

Assuming the solution in the current  

configuration known as �̅� ,[6]the approximation of  

𝛹about q is 

𝜓(�̅�) = 𝜓(𝑞 +△ 𝑞) = 𝜓(�̅�) + [
𝛿𝜓

𝛿𝑞
]
𝑞
𝛿𝑞 + ⋯ = 0  

(28)  

Ignoring the higher order terms, a first order 

approximation relating the vector of residual forces 

to the displacement increments is obtained at ‘q’=
(𝑞 +△ 𝑞) = [𝐾𝑇] △ 𝑞     (29)          

where[KT] is the tangent stiffness matrix. 

[𝐾𝑇] = [
𝛿𝜓

𝛿𝑞
]
𝑞=�̅�

                                                   (30) 

Solution of linear Eq. (29) provides vector of 

displacement increments and therefore the solution 

is in the future configuration, Since the linear 

equation is only a first order approximation to the 

original nonlinear Eq. (13), iteration must be 

carried out  with an increment to obtain more 

accurate results. Assuming the solution obtained at 

the ithiteration is  q(i) then the new approximation 

solution is  

�̅�(𝑖 + 1) = �̅�(𝑖) +△ 𝑞(𝑖)                                       
(31) 

The solution is exact �̅�(𝑖 + 1)I exact if �̅�(𝑖 + 1) =
0 

The explicit expression for tangent stiffness [KT] in  

terms of previously determined element matrices 

can be determined from  Eq.(13) 

𝛿𝜓 = ∫[𝐻]𝑇 𝛿[𝐹0]𝑑𝑎 + 

∫𝛿[𝐻]𝑇 [𝐹0]𝑑𝑎 − ∫𝛿[𝐻]𝑇 [𝐹𝑇]𝑑𝑎 

= ∫[𝐻]𝑇 𝛿[𝐹0]𝑑𝑎 + ∫ 𝛿[𝐻]𝑇 [𝐹]𝑑𝑎 (32) 

From Eq.(11) and Eq.(22)   

𝛿[𝐻] = 𝛿[𝐵𝑁𝐿] = 𝛿[𝑅𝑜][𝐺]     (33) 

Substituting Eq. (17) and  Eq. (33) in  Eq. (32) 

𝛿𝜓 = ∫[𝐻]𝑇 [𝐸][𝐻]𝑑𝑎𝛿𝑞 + ∫[𝐺]𝑇𝛿 [𝑅0]
𝑇𝐹𝑑𝑎     

(34) 

Where[𝐸]=[
𝐴 𝐵
𝐵 𝐷

] 

Expanding [[𝑅0]
𝑇[𝐹] = 𝑃𝛿[𝜙] = [𝑃][𝐺]𝛿[𝑞]   (35) 

 

Where [ 𝑃] =

[
 
 
 
 
 
𝑁𝑋𝑋 𝑁𝑋𝑌 0 0 0 0
𝑁𝑋𝑌 𝑁𝑌𝑌 0 0 0 0
0 0 𝑁𝑋𝑋 𝑁𝑋𝑌 0 0
0 0 𝑁𝑋𝑌 𝑁𝑌𝑌 0 0
0 0 0 0 𝑁𝑋𝑋 𝑁𝑋𝑌

0 0 0 0 𝑁𝑋𝑌 𝑁𝑌𝑌]
 
 
 
 
 

  

(36) 

Substituting in Eq. (27) 

𝛿𝜓 = ∫[𝐻]𝑇 [𝐸][𝐻]𝑑𝑎𝛿[𝑞]

+ ∫[𝐺]𝑇[𝑃][𝐺]𝑑𝑎𝛿[𝑞] 

= [𝐾𝑇]𝛿[𝑞]                 (37)                                                                                   

Substituting for [H]=[𝐵𝐿] + [𝐵𝑁𝐿],From Eq.(14) 

∫[[𝐵𝐿] + [𝐵𝑁𝐿]⌋
𝑇[𝐸][[𝐵𝐿]] + [𝐵𝑁𝐿⌋]𝑑𝑎𝛿[𝑞] + 

∫[𝐺]𝑇 [𝑃][𝐺]𝑑𝑎𝛿[𝑞] 

= ∫[𝐵𝐿]
𝑇 [𝐸][𝐵𝐿]𝑑𝑎𝛿[𝑞] + 

∫[𝐵𝐿]
𝑇 [𝐸][𝐵𝑁𝐿]𝑑𝑎𝛿[𝑞] + 

∫[𝐵𝑁𝐿]
𝑇 [𝐸][𝐵𝐿]𝑑𝑎𝛿[𝑞]∫[𝐵𝑁𝐿]

𝑇 [𝐸][𝐵𝑁𝐿]𝑑𝑎𝛿[𝑞]

+ 

∫[𝐺]𝑇[𝑃][𝐺]𝑑𝑎𝛿[𝑞]                              (38)   

= [𝐾𝑇]𝛿[𝑞] 
The Tangent stiffness matrix is given by, 
[𝐾𝑇] = [𝐾𝐿] + [𝐾𝑁𝐿] + [𝐾𝐺]                  (39) 

Where[KL] is a linear structural stiffness matrix. 

[𝐾𝐿] = ∫[𝐵𝐿]
𝑇 [𝐸][𝐵𝐿]𝑑𝑎                               (40) 

[KNL]is initial displacement matrix or  

Large displacement matrix or nonlinear stiffness 

matrix. 

[𝐾𝑁𝐿]  = ∫[𝐵𝐿]
𝑇 [𝐸][𝐵𝑁𝐿]𝑑𝑎 + 

∫[𝐵𝑁𝐿]
𝑇 [𝐸][𝐵𝐿]𝑑𝑎 + ∫[𝐵𝑁𝐿]

𝑇 [𝐸][𝐵𝑁𝐿]𝑑𝑎        

(41) 

[𝐾𝐺] = ∫[𝐺]𝑇[𝑃][𝐺]𝑑𝑎                                     (42) 

[KG]is geometric stiffness matrix or initial stress 

matrix. 

The most common approximation of the nonlinear  

problem in buckling analysis treating the  

prebuckling behaviour as linear and taking  
[𝐾𝑁𝐿] = 0                                                    

∴ δψ = [KL] + [KG]δ[q] 
If  the  loads are increased by a factor  λ 

we find that a neutral stability exists [3]. That is  

[[𝐾𝐿] + 𝜆[𝐾𝐺]]𝛿[𝑞] = 0                                  (43) 
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From this  can be obtained by solving the typical 

Eigen value problem 

|[𝐾𝐿] + 𝜆[𝐾𝐺]|=0                                            (44)          

In  Fig .1 this corresponds to bifurcation on point 

“a”      

The next improvement considers the initial 

displacements matrix [𝐾𝑁𝐿]  as linear (that is, 

prebuckling deformation is linear)  

Which leads to the extended Eigen value problem. 

|[𝐾𝐿] + [𝐾𝑁𝐿] + 𝜆[𝐾𝐺]|  =0   (45)   

In Fig. 1 the buckling load corresponds this to point 

“ b”.If the prebuckling deformation is nonlinear, it 

will become nonlinear analysis and the buckling 

load corresponds  to point “c” or “d.    If it is a case 

of bifurcation buckling the load corresponds to 

point  ‘c ‘. If it is a limit load case, then buckling 

load corresponds to point ‘d’. 

 

CONVERGENCE AND VALIDATION: The 

program developed using Semiloof shell element 

by Singh and Thangaratnam10,11 for thermal stress, 

vibration and buckling analysis of isotropic, 

composite  plates and shells is extended to 

nonlinear analysis based on the above formulation. 

The program is validated with results available in 

the literature and good agreement is observed.The 

boundary conditions given in Ref.10,11are used. 

SS1Simply supported u=0,v=0,w=0,  𝜃𝑥𝑧 ≠ 0 , at 

x=0,a and u=0,v=0,w=0, 𝜃𝑥𝑧 ≠ 0,at  y=0,b 

SS2 Simply supported u≠0,v =0,w=0, 𝜃𝑥𝑧 ≠ 0, at  

x=0,a and u =0,v ≠0 ,w=0, 𝜃𝑥𝑧 ≠ 0,at y=0,b  

III. RESULT AND DISCUSSION 

Square plate of size 100mmx100mm and thickness 

h =1 mm. (a/h=100) is considered.  The linear and 

non-linear buckling analysis of the plate is been 

studied here using different boundary conditions 

such as SS1 and SS2, the Material property: EII/ETT 

= 40, GIT/ETT = 0.5, 𝜇IT = 0.25, ETT = 1.0 x 104 

Kg/cm2 and a/h = 100 is considered and analysed 

which consist of number of layers from 2 to 6 

layers. 

Mechanical Load: Squareunsymmetrical cross-ply 

laminates with three type of boundary condition 

(S1and S2) has been studied. The buckling 

behaviour of the square laminate has been studied 

using the present formulation treating it as linear 

buckling where in the prebuckling deformation is 

ignored and also as extended linear buckling where 

in the prebuckling deformation is treated as linear 

function of load. 

 

 

 

 

 

Table 1 Linear Buckling loads for simply supported (S1) 

square plates 

 

The above table describes the difference in the 

level of Linear buckling (SS1) based on the number 

of layers. 

 

Simply supported (SS2) boundary condition due to 

in-plane displacement unrestrained: The central 

displacement vs. in plane load with the number of 

layers as parameter is presented. The square plate is 

considered as both symmetric and unsymmetrical 

cross-ply and angle-ply, using SS2 boundary 

condition. 

 The Linear buckling analysis of cross-ply 

square plate has been studied and is mentioned in 

the below table, 

 

Table 2 Linear Buckling loads for simply supported 

(S2) square plates-cross ply 

 

Square plate is also analysed in the form of angle 

ply for symmetric and unsymmetrical condition 

using SS2 boundary condition. The analysis is done 

by considering different kinds of angles staring 

from 15° to 90°. The below table describes the 

linear analysis of the plate, and the graph is plotted 

for number of layers vs. buckling values of 

different layers. 

Symmetric condition: square plate (angle ply) is 

considered and the linear buckling analysis results 

are taken. 

 

 

 

 

 

 

 

 

LINEAR BUCKLING LOADS FOR 

SIMPLY SUPPORTED 

(S1) SQUARE PLATES 

NO.OF LAYERS LINEAR BUCKLING 

LOAD 

2 22.9 

4 35.9 

6 37.6 

LINEAR AND NON-LINEAR BUCKLING 

LOADS FOR SIMPLY SUPPORTED 

(S2) SQUARE PLATES 

NO.OF 

LAYERS 

LINEAR BUCKLING 

LOAD 

2 12.42 

4 27.81 

6 26.9 
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Table 3.Linear buckling analysis -Laminated (angle 

ply-symmetrical SS2) 

 

Fig 2. Symmetric laminated angle ply-linear buckling 

 

The linear buckling analysis of symmetrical 

laminated angle-ply has been studied for number of  

layers (2 to 8) with different angle from 15° to 90°. 
From  the above results its noted that (2-Layer) has 

the maximum buckling effect on the angle ply-

square plate. 

unsymmetrical condition : square plate (angle ply) 

is considered and the linear buckling analysis 

results are taken. 

The buckling (Linear) analysis of unsymmetrical 

condition has been studied , the results are taken for 

number of layers (2 to 8) consisting of angle 

variation from 15° to 90°. Table 4. describes the 

results derived from SS2-boundary condition. 

 
Table 4.Linear analysis of laminated angle ply-

(Unsymmetrical-S2) 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3. Unsymmetrical laminated angle ply-linear buckling 

 

Non-linear Buckling analysis: The central 

displacement vs. in plane load with the number of 

layers as parameter is presented. The nonlinear 

buckling analysis results for cross-ply square plate 

is studied and compared with the linear buckling 

analysis. 
 

Table 5. Nonlinear Buckling analysis of laminated cross-

ply 

 

 

From the above results it is noted that the linear 

analysis at different layers has higher variation of 

buckling , in terms of nonlinear buckling analysis 

the variation is higher thanof the linear buckling at 

different layers. 

 

Thermal load: 2-layer cross-ply square laminate 

subjected to uniform temperature rise under types 

of boundary condition (S1,S3,C1,C3) have been 

analysed using linear and nonlinear formulations. 

The results are presented below, 
 

Table 6. Critical Temperature Tcr for (2-layers) cross-ply 

laminated square plates. 

Laminated-Angle Ply (symmetrical-S2) 

No.of 

layers 
15° 30° 45° 60° 75° 90° 

2 116 1772 2305 1778 1907 6442 

4 278 574 911 1253 4332 6442 

6 615 656 1066 1365 5113 5690 

8 757. 855 1457 1675 4722 6442 

Laminated-Angle Ply (unsymmetrica-S2) 

No.of 
layers 

15° 30° 45° 60° 75° 90° 

2 628 544 710 984 102 793 

4 278 917 1539 1704 5532 6442 

6 736 868 1499 1622 4462 5690 

8 843 1003 1749 1879 4924 6442 

LINEAR AND NON-LINEAR BUCKLING 

LOADS FOR SIMPLY SUPPORTED 

(S2) SQUARE PLATES 

NO.OF 

LAYERS 

LINEAR 

BUCKLING 

LOAD 

NON-

LINEAR 

BUCKLING 

LOAD 

2 12.42 43.02 

4 27.81 30.68 

6 26.9 25.84 

LINEAR AND NON-LINEAR BUCKLING 

ANALYSIS FOR CRITICAL 

TEMPERATURE 

 

NO.OF 

LAYERS 

LINEAR 

BUCKLING 

LOAD 

NON-

LINEAR 

BUCKLING 

LOAD 

S1 82.7219 82.7219 

S3 82.8125 82.8125 

C1 109.7077 109.7077 

C3 109.6990 109.0400 
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The linear and nonlinear analyses give rise to 

almost same buckling loads. there is a difference 

between the values under simply supported and 

clamped boundary conditions with the latter having 

the higher value. 

 

IV.CONCLUSION 

It is observed here that the nonlinear formulation is 

required if the prebuckling deformation is 

considerable and linear bifurcation maybe expected 

to give satisfactory results if the prebuckling 

deformation are small. The extent of prebuckling 

deformation depends on parameters such as number 

of layers, boundary conditions and type of load. In 

the case of laminates with large number of layer 

>8, the linear analysis is sufficient irrespective of 

other parameters. A static stress analysis may be 

expected to reveal the fact whether linear or 

nonlinear buckling analysis is required in a specific 

case. The behaviour of laminated composite plates 

under thermal load are different from that under 

mechanical loads whether unidirectional or 

bidirectional. this is due to the dependence of the 

thermally induced loads on parameters like fibre 

orientation angle and stacking sequence. 
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